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Abstract Diseases such as obesity, diabetes, and athero-
sclerosis result from multiple genetic and environmental
factors, and importantly, interactions between genetic and
environmental factors. Identifying susceptibility genes for
these diseases using genetic and genomic technologies is
accelerating, and the expectation over the next several years
is that a number of genes will be identified for common dis-
eases. However, the identification of single genes for dis-
ease has limited utility, given that diseases do not originate
in complex systems from single gene changes. Further, the
identification of single genes for disease may not lead di-
rectly to genes that can be targeted for therapeutic interven-
tion. Therefore, uncovering single genes for disease in
isolation of the broader network of molecular interactions
in which they operate will generally limit the overall utility of
such discoveries. Several integrative approaches have been
developed and applied to reconstructing networks. Here
we review several of these approaches that involve integrat-
ing genetic, expression, and clinical data to elucidate net-
works underlying disease. Networks reconstructed from
these data provide a richer context in which to interpret asso-
ciations between genes and disease. Therefore, these net-
works can lead to defining pathways underlying disease
more objectively and to identifying biomarkers and more-
robust points for therapeutic intervention.—Schadt, E. E.,
and P. Y. Lum. Reverse engineering gene networks to iden-
tify key drivers of complex disease phenotypes. J. Lipid Res.
2006. 47: 2601–2613.
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With the completion of the sequencing of genomes
from multiple species, the challenge in the life and bio-
medical sciences now is to decipher the biological func-
tion of individual genes, pathways, and, more generally,
biological networks that drive complex phenotypes, in-
cluding common human diseases. The identification of

single genes for common diseases has greatly accelerated
over the past several years. With access to the complete
genome sequence for a diversity of species, large-scale
haplotype maps, technologies capable of screening DNA
polymorphisms and gene activity on an unprecedented
scale, and well-characterized human cohorts, genes ex-
plaining an appreciable risk for a number of common
human diseases have been identified. Notable examples
are TCF7L2, a major disease gene for common forms of
type 2 diabetes (1, 2); INSIG2, a major obesity gene
potentially explaining 4% of lifetime body mass index
(BMI) in the human population (3); CFH, one of the
more striking discoveries for age-related macular degen-
eration, where a number of sequence variations in com-
plement factor H have been found to be strongly
associated with this disease in a number of human studies
(4–8); and ALOX5, a gene identified in human and mouse
populations that predisposes to a number of disease-
related traits, including atherosclerosis (9, 10), hyperlip-
idemia-dependent aortic aneurysm (11), and obesity and
bone phenotypes (12). Although these examples repre-
sent only a handful of the discoveries that have been made
in recent years, they highlight how leveraging large-scale,
high-throughput genetic and functional genomic tech-
nologies, in addition to well-characterized animal and
human populations, can lead directly to the identification
of key drivers of disease.

However, despite the identification of a number of
novel disease-predisposing genes, progress in uncovering
the mechanisms by which these genes lead to disease has
been far slower. Even in cases in which genes validating as
causal for disease are known to operate in what are
thought to be well-understood pathways, it is often unclear
whether the connection to disease regarding such genes
involves the known pathways, whether these “known”
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pathways are more general than is presently known, or
whether the disease-associated genes operate in multiple
pathways, some of which are yet to be defined. An exam-
ple is the gene Tgfbr2, a key component of the trans-
forming growth factor-b signaling pathway, that involves
only a modest number of proteins, but whose expres-
sion in the liver of mice from an F2 intercross popula-
tion was shown to associate with thousands of other genes
ostensibly unrelated to this classic signaling pathway (13,
14). The gene was subsequently identified and validated
as causal for obesity in a segregating mouse population
(13), but how variations in this gene lead to obesity is not
yet understood.

As the drive to understand the context in which disease-
causing genes operate and as ever-bigger data sets moni-
toring large-scale molecular activity at unprecedented
scales increase, it is becoming generally accepted that
many biological functions, which are often system and
context dependent, need to be studied at the systems level
in addition to studying gene function at the level of indi-
vidual pathways (14, 15). To provide the proper context
in which to interpret single-gene discoveries, a systems
biology approach is needed, and such approaches will
be successful only if they accurately reflect the biologi-
cal states underlying disease. This type of view can only be
achieved via the integration of a diversity of data inform-
ing on the complex system under study. Toward this end,
there has been significant effort applied to reconstructing
and characterizing biological networks based on a diversity
of biological data.

After motivating the need to take a systems biology
approach to dissecting complex disease traits, we review a
number of approaches that have been recently developed
to elucidate gene networks associated with complex traits
such as common human diseases. Coexpression networks
leverage pair-wise interaction data among genes to repre-
sent more-general relationships among genes in a com-
prehensive fashion. Central to this type of network is the
manifestation of modules comprised of highly intercon-
nected sets of genes that ostensibly form the functional
units of the networks that are associated with complex
phenotypes such as disease. To get at causal relationships
among genes, and between genes and clinical phenotypes,
simple networks comprised of only a handful of genes,
clinical phenotypes, and genetic loci are also reviewed.
By integrating genetic, expression, and clinical phenotype
data, the resulting networks are capable of representing
direction along the edges of the network (unlike coexpres-
sion networks, which are undirected networks), where di-
rectionality among the edges provides the source of causal
information used to establish causal relationships both
among genes and between genes and clinical phenotypes.
Bayesian networks that incorporate genetic and expres-
sion data are then reviewed as a generalization of this
simpler approach, and again provide for the ability to
represent causal relationships both among genes and be-
tween genes and clinical traits. We discuss key concepts
emerging from patterns of network structure, such as
changes in response to different environmental condi-

tions, motivating the need for statistics based on networks
that go beyond the single-gene measures of differential
expression that have dominated the microarray commu-
nity since its inception. Finally, we illustrate how networks
provide a far richer context within which to characterize
genes found to be causal for disease, ultimately provid-
ing a framework for identifying key intervention points
that can be targeted for disease. These emerging high-
dimensional data analysis approaches highlight that
evolving statistical procedures on networks will be critical
to extracting information related to complex pheno-
types such as disease, as research goes beyond the single-
gene focus.

A SYSTEMS BIOLOGY APPROACH TO ELUCIDATING
DISEASE TRAITS

Diseases such as atherosclerosis, hypertension, obesity,
and other such common human diseases involve multiple
tissues potentially signaling in complicated and as yet to be
defined ways. As highlighted in Fig. 1, the GI tract, vascu-
lature, immune system, heart, and brain are all potentially
involved in either the onset of diseases such as atheroscle-
rosis or in comorbidities such as myocardial infarction and
stroke brought on by such diseases. Further, the risks of
comorbidities for diseases such as atherosclerosis are in-
creased by other diseases, such as hypertension, which
may, in turn, involve other organs, such as kidney. The role
that each organ and tissue type plays in a given disease is
largely determined by genetic background and environ-
ment, where different perturbations to the genetic back-
ground (perturbations corresponding to DNA variations
that affect gene function, which, in turn, leads to disease)
and/or environment (changes in diet, levels of stress, level
of activity, and so on) define the subtypes of disease mani-
fested in any given individual.

Although the physiology of diseases such as atheroscle-
rosis is beginning to be better understood, what has not
been fully exploited are the vast networks of molecular
interactions at play within the cells comprising tissues re-
lated to disease. As shown in Fig. 1, there is a diversity of
molecular networks functioning in any given tissue,
including genomics networks, networks of coding and
noncoding RNA, protein interaction networks, protein
state networks, signaling networks, and networks of me-
tabolites. Further, these networks are not acting in isola-
tion within each cell, but instead interact with one another
to form complex, giant molecular networks within and
between cells that drive all activity in the different tissues,
as well as signaling between tissues. Variations in DNA and
environment lead to changes in these molecular networks,
which, in turn, induce complicated physiological processes
that can manifest as disease.

Despite this vast complexity, the classic approach to
elucidating genes that drive disease has focused on single
genes or single linearly ordered pathways of genes thought
to be associated with disease. This narrow approach is a
natural consequence of the limited set of tools that were
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available for querying biological systems; such tools were
not capable of enabling a more holistic approach, result-
ing in the adoption of a reductionist approach to teasing
apart pathways associated with complex disease pheno-
types. Although the emerging view that complex biological
systems are best modeled as highly modular, fluid systems
exhibiting a plasticity that allows them to adapt to a vast
array of conditions, the history of science demonstrates
that this view, although long the ideal, was never within
reach, given the unavailability of tools adequate to carrying
out this type of research. The explosion of large-scale,
high-throughput technologies in the biological sciences
over the past 15 to 20 years has motivated a rapid paradigm
shift away from reductionism in favor of a systems-level
view of biology (14, 15). With tools now available to take
comprehensive looks at entire systems, success in biomedi-
cal research in the future will demand a more compre-
hensive view of the complex array of interactions driving
biological systems, including how such interactions are
modulated by genetic background, infection, environ-
mental states, lifestyle choices, and social structures more
generally (16, 17). This holistic view requires an embrac-
ing of complexity in its entirety, where the emerging view
of complex systems is one of dynamic, fluid systems able to

reconfigure themselves as conditions demand (18–20).
Central to the study of complex, integrated systems is the
concept of a network as a way of representing the extensive
interactions among the different components of a system.

INTERACTION NETWORKS AS A WAY TO ORGANIZE
AND CHARACTERIZE DISEASE NETWORKS

Networks provide a convenient framework for repre-
senting high-dimensional data in which relationships
among the many variables making up such data are the
key to understanding the properties that emerge from the
complex systems they represent. Networks are simply
graphical models comprised of nodes and edges. For gene
networks associated with biological systems, the nodes in
the network typically represent genes, and edges (links)
between any two nodes indicate a relationship between the
two corresponding genes. For example, an edge between
two genes may indicate that the corresponding expression
traits are correlated in a given population of interest (21),
that the corresponding proteins interact (22), or that
changes in the activity of one gene lead to changes in the
activity of the other gene (13). Interaction or association

Fig. 1. Diseases such as atherosclerosis and hypertension comprise a diversity of different disease subtypes
involving multiple organs and tissue types. Operating within each tissue (and each cell within a given tissue)
are a number of molecular networks that ultimately drive the onset of disease. These networks are context
specific and sensitive to internal and external environmental conditions as well as genetic background.
Variations in the connectivity structure of these networks are induced by variations in the genetic back-
ground and environmental conditions, where these variations in turn lead to phenotypic variations, in-
cluding disease. Studying the molecular networks in all relevant tissues and associating them with clinically
relevant phenotype data to identify the networks driving disease are among the goals of systems biology
applied to disease research. By taking a more holistic approach, it may be possible to better understand the
complex interplay among tissues, molecular networks, and environment that leads to disease.

Systems biology approach to dissecting complex traits 2603
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networks, formed by considering only pair-wise relation-
ships between genes, including protein interaction rela-
tionships (18), coexpression relationships (23, 24), and
other straightforward measures that may indicate associ-
ation between two genes, have recently gained more wide-
spread use in the biological community.

Barbasi and Albert (25) were among the first to describe
key topological features of complex networks in biological
systems, and since then, several groups have characterized
the topological properties of biological networks and
elucidated the plasticity of these networks on the basis
of protein interaction, gene deletion lethality, and meta-
bolomic and transcriptome data (18, 19, 25–27). More
recently, this type of approach has been applied to
coexpression data in yeast (28), mouse (24, 29), and hu-
man (30). The key features that emerges from all studies
are that coexpression networks across all species examined
to date are scale free and hierarchical. The scale-free
property basically implies that of all the nodes in the
network, most nodes are connected to relatively few nodes,
whereas relatively few nodes are highly connected to many

other nodes, giving rise to the concept of hub nodes that
potentially represent key information control points in the
network. The hierarchical property implies that nodes in
the network cluster into modules of highly interconnected
genes that are not as highly connected with genes outside
of the module.

One way to visualize such networks is as a topological
overlap map (Fig. 2A). Originally described by Barabasi
and Oltvai (16), this type of plot represents the connec-
tivity structure of the overall network. The hierarchical
structure of the network is well highlighted by this type of
plot, in which genes assemble into coherent modules (the
blocks along the diagonal in Fig. 2A) that define the func-
tional components of the network (24). These functional
units of the network can then be seen to associate with
pathways and disease states, providing insights into those
parts of the network that may be driving particular sub-
types of disease (23, 24, 28). One of the modules high-
lighted in the Fig. 2A topological overlap map, generated
from liver samples in a previously described cross (31, 32),
is enriched for genes associated with lipid and cholesterol

Fig. 2. Coexpression and Bayesian networks constructed from segregating mouse populations. A: The left panel represents a topological
overlap map of the liver tissue from female mice in the BXH cross (24, 31, 32) constructed using previously described methods (56). The
plot represents 5,000 of the most highly connected genes in the liver tissue of the BXH cross, with red and blue indicating positive and
negative correlation, respectively, between the corresponding genes, and white indicating absence of correlation at some prespecified
correlation threshold. Genes along the x- and y-axes are clustered according to similarity of correlation measures, which highlights the
modular structure of the network, given the appearance of the blocks along the diagonal. The right panel represents an Insig1/Insig2-
specific subnetwork from a previously published Bayesian network constructed from the liver data in the BXH cross (33). The genes in this
part of the Bayesian network are most significantly enriched for genes in module 4 of the topological overlap map (roughly 60% of the
genes in the Bayesian network fall into module 4). B: A previously published Bayesian subnetwork from brain gene expression data in the
BXH cross. Here the gene expression traits and clinical traits are considered as nodes in the network.
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metabolism. In fact, this module is enriched for genes
comprising a previously published network involving an
Insig2 subnetwork derived from the same cross, where
Insig2 was mapped as a susceptibility gene for cholesterol
levels as well as other metabolic traits, including obesity
(Fig. 2A) (33). As highlighted in this figure, genes in the
network are associated with cholesterol metabolism (light
blue nodes) as well as lipid synthesis (green nodes).

This example highlights that the identification of key
modules in the network involves known biological path-
ways and is linked to disease traits, representing the utility
of coexpression networks, with respect to the dissection of
complex disease traits. Coexpression networks provide a
gross characterization of the connectivity properties of the
network, thereby organizing vast amounts of data into
logical units. For example, the plot shown in Fig. 2A
represents nearly 12.5 million correlation measures taken
from 5,000 gene expression traits monitored in over 150
liver samples. In contrast to cluster analysis (34), a more
routine way of assessing the similarity of expression traits
over different genes and experiments, the coexpression
networks provide more structure information on the con-
nectivity of the network, as well as highlighting modules
of highly interconnected genes, which themselves would
cluster closely together in a cluster analysis; but the mod-
ule is a more highly purified structure with respect to rela-
tionships among genes, focusing mainly on genes that are
very highly correlated and highly interconnected, with a
more limited number of genes falling within a cluster. As
discussed below, the highly correlated, highly connected
structures within a network module, as well as the weak
links that tie these different structures together, highlight
potential new strategies for exploring how to target such
networks associated with a given disease in order to treat
the disease effectively.

DIFFERENTIAL CONNECTIVITY AS A KEY
STATISTICAL MEASURE IN BIOLOGICAL NETWORKS

One of the key concepts emerging from the study of
networks such as the coexpression network depicted in
Fig. 2A is that of differential connectivity with respect to
different phenotypic groups within populations that have
been profiled. Given tissue samples from two phenotypic
groups of individuals (say, those with a given disease vs.
those without), a gene is considered differentially con-
nected between the two groups if the number of genes to
which the gene is significantly correlated is significantly
different. Although this concept has not yet been formally
defined in statistical terms in the literature, there have al-
ready been striking examples of large-scale changes in the
connectivity structure among molecular phenotypes moni-
tored in the same system under different environmental
conditions. For example, Luscombe et al. (19) demonstrated
that in response to different environmental conditions, por-
tions of the yeast transcriptional network were subject to
extensive rewiring. It may be that this type of rewiring at
the transcription and/or protein network level may induce

dramatic changes in physiological processes as well, as was
evidenced by the significant rewiring of arcuate nucleus
feeding circuits observed in response to leptin (20).

Coexpression networks, compared with protein interac-
tion networks, in which protein interactions are typically
assessed in yeast two-hybrid systems that do not necessarily
represent the natural context in which protein interactions
normally occur (22), are arguably more coherent, given
that the state of the 25,000 or so genes from which such
networks obtain are simultaneously measured in each tis-
sue and then monitored in a large number of individuals
in a given population, enabling the detection of weak links
as well as strong links in the network. As a result, the de-
tection of genes with significantly different connectivity
patterns may be more easily achieved in this setting. As
an example, the liver expression data published on a pre-
viously described cross between B6 and C3H mice on an
ApoE-null background (referred to here as the BXH cross)
gave rise to striking differences in liver expression between
female and male mice, indicating widespread sexually di-
morphic patterns of gene expression (32). Given these dif-
ferences, one could imagine that differential connectivity
differences would also manifest themselves in this setting,
and this is indeed the case. If these previously published
data are examined, it is easy to identify modules in the
liver coexpression network that are highly connected in
one sex but not the other. Figure 3A highlights a set of
genes in male mice from the BXH cross that are signifi-
cantly correlated with many other genes, which themselves
are highly interconnected. Figure 3B highlights this very
same set of genes for females, where it is quite clear from
the image that the genes that were highly interconnected
in the males are not highly correlated with these same
genes nor are they highly interconnected in the female
mice. In fact, only roughly 10% of the genes that were sig-
nificantly correlated in males are significantly correlated
in the females, as shown in the box highlighted in Fig. 3.

One of the most interesting observations related to this
pattern of differential connectivity is that genes that are
differentially connected between two groups, as shown in
Fig. 3, are not necessarily differentially expressed between
the two groups. In fact, from the region highlighted in
Fig. 3, only 60% of the genes defined in the indicated
region were identified as differentially expressed between
males and females (32). This suggests that there are whole
classes of genes whose expression is not varied between
two phenotypic groups of interest, but that nevertheless
get wired into the network very differently between the two
groups. These observations are particularly important in
differences between the sexes in the context of disease,
given that striking differences between sexes have been
observed for a diversity of complex phenotypes, includ-
ing obesity (31), diabetes (35), atherosclerosis (36, 37),
behavior (38), and drug response (39, 40), among many
other phenotypes.

Whether differences in connectivity are the result of
genetic, hormonal, or other environmental differences
between the sexes, changes in how a gene gets wired into
a network is an important concept. In fact, how a gene
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gets wired into different biological networks within and
between different tissues may turn out to be at least as im-
portant as differential regulation between disease and non-
disease groups, with respect to elucidating how networks
drive disease. Certainly this type of idea is worthy of fur-
ther pursuit, and, in fact, it raises awareness that down the
road, in order to be effective at leveraging networks to elu-
cidate disease, statistical methods need to address data at
the level of the network as opposed to the level of single
genes varying among groups. Considering large sets of
genes to increase power to make inferences on single genes
has been beautifully leveraged in current analysis methods
(41–43). However, what will be needed in the future are
methods that leverage this type of information to make
inferences on whole networks of genes associated with dif-
ferent phenotypic states in systems of interest.

INTEGRATIVE GENOMICS APPROACHES TO
INFERRING CAUSAL NETWORKS

Coexpression networks are informative as discussed for
gross characterizations of the properties of biological net-

works, identification of highly connected (hub) nodes,
and identification of functional modules that aid in the
characterization of subnetworks associated with disease.
Despite these and other advantages, coexpression net-
works do not provide explicit details on the connectivity
structure among genes in the network, including the rep-
resentation of causal associations among genes and be-
tween genes and phenotypes. Causal associations among
genes or between genes and traits have classically been
established using time series experiments, gene knock-
outs, or transgenics that overexpress a gene of interest,
RNAi-based knockdown or viral-mediated overexpression
of genes of interest, and chemical activation or inhibition
of genes of interest. However, recently, a number of studies
have demonstrated that establishing such causal associa-
tions is now possible by leveraging naturally occurring
variations in DNA, given that gene expression and other
molecular phenotypes in a number of species have been
shown to be significantly heritable and at least partially
under the control of specific genetic loci (44–54). By ex-
amining the effects that naturally occurring DNA have on
variations in gene expression traits in human or experi-
mental populations, other phenotypes (including disease)

Fig. 3. Differential connectivity between males and females in the BXH liver gene expression data. A:
On the right is a portion of a topological overlap map from the male BXH liver data, comprised of a set
of genes identified as highly interconnected in males, but not females. Color scale on the right side of
the left panel indicates degree of correlation. Depicted on the right side is a representative gene (green
node) from the set of highly interconnected genes falling in the indicated white box, where the rep-
resentative gene is connected to many other genes. B: The same plot as in A, but for females, where the
gene order is the same as that determined for males in A. Despite having more animals in the female group
(162 vs. 158), the correlations in the module highlighted by the white box are very significantly reduced
compared with males. The representative gene shown in A is highlighted at left (also green node) and is
seen in the female liver data to be connected to fewer than 10% of the genes connected to this gene in
the males.
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can be examined with respect to these same DNA varia-
tions and ultimately ordered with respect to genes to infer
causal control (Fig. 4) (12, 13, 55, 56).

It is important to note here that when we use the term
causality in the present context, it is perhaps meant in
a more nonstandard sense than that to which most re-
searchers in the life sciences may be accustomed. In the
molecular biology or biochemistry setting, claiming a causal
relationship between, say, two proteins probably implies
that one protein has been determined experimentally to
physically interact with or to induce processes that directly
affect another protein, and that this in turn leads to a phe-
notypic change of interest. In such instances, the causal
factors relevant to this activity are known, and careful ex-
perimental manipulation of these factors subsequently al-
lows for the identification of genuine causal relationships.
However, in the present setting, the term causality is used
from the standpoint of statistical inference, where statisti-
cal associations between changes in DNA, changes in ex-
pression (or other molecular phenotypes), and changes in
complex phenotypes like disease are examined for patterns
of statistical dependency among these variables that sup-
port directionality among them, where the directionality

then provides the source of causal information (highlight-
ing putative regulatory control as opposed to physical in-
teraction). The gene networks described here, therefore,
are necessarily probabilistic structures that use the avail-
able data to infer the correct structure of relationships both
among genes and between genes and clinical phenotypes.
The mathematical theory of how causal inferences can be
made by examining dependency patterns from raw data
is well established, and Judea Pearl (57, 58), among the
very first to develop the mathematical and computational
methods for this purpose, provides an excellent description
and treatment of this underlying theory.

A number of groups have now published on related
strategies for identifying key drivers of complex traits by
examining genes located in regions of the genome geneti-
cally linked to a complex phenotype of interest, and then
looking for colocalization of cis-acting expression quanti-
tative trait loci (QTL) for those genes residing in the
region linked to the phenotype (13, 44, 49, 50, 52, 59, 60).
Those genes with 1) expression values that are significantly
correlated with the complex phenotype of interest (in-
cluding disease), 2) transcript abundances controlled by
QTL that colocalize with the phenotype QTL, and 3)

Fig. 4. Simplified view on strategy for reverse engineering gene networks using genetics in a fixed
environment. The top layer represents DNA in the genome, where, in any given population, we can associate
changes in the DNA with changes in the levels of transcription of both protein coding and noncoding (RNA)
genes. DNA variations that fall within the region of the structural gene and associate with that gene’s
expression are referred to as cis-acting expression quantitative trait loci (eQTL), as opposed to trans-acting
eQTL in which the DNA variation does not fall in the genomic region supporting the corresponding
structural gene region (72). The proximity of transcribed sequences to the DNA provides for increased
power to detect regions of the genome affecting transcript abundance levels. Changes in RNA are then
shown to induce changes in proteins, where a complex web of protein interactions can form and give rise to
varied cellular functions that in turn lead to disease. The gene network reconstruction methods discussed in
the text leverage the ultimate source of perturbations (changes in DNA) in a system under fixed environ-
mental conditions to order nodes in the network.

Systems biology approach to dissecting complex traits 2607
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physical locations supported by the phenotype and expres-
sion QTL are natural causal candidates for the complex
phenotype of interest. In these cases, the DNA variation
serves as a causal anchor (given that variations in DNA
lead to changes in transcription and other molecular trait
activities), making it possible to partition the thousands
of gene expression traits that may be correlated with a
given phenotype of interest into sets of genes that are
supported as causal for, reacting to, or independent of
the given phenotype. The key to the success of this ap-
proach is the unambiguous flow of information, from
changes in DNA to changes in RNA and protein function
(Fig. 4). That is, given that two traits are linked to the
same DNA locus, there are a limited number of ways in
which such traits can be related with respect to that locus
(13, 61, 62), whereas in the absence of such genetic in-
formation, many indistinguishable relationships would be
possible, so that additional data would be required to es-
tablish the correct relationships.

It is common in studies leveraging microarray data to
speculate on the possible functions implied by sets of
differentially expressed mRNAs. However, functional in-
terpretation of mRNA data is made difficult by the mul-
tiple protein products of each mRNA, the extremely large
number of possible protein-protein interactions, the dif-
ficulty in precisely defining functional categories, and the
fact that cell functions are controlled by phosphoryla-
tion, GTP transfer, and other signaling pathways, rather
than by protein abundance alone. Further, given the large
number of possible products, including posttranslational
products of each mRNA, as well as the large number of
possible protein-protein interactions, the number of pos-
sible combinations may be too large to fit easily into some-
what arbitrary, obviously overlapping functional categories.
Therefore, the direction of the analysis arrow shown in
Fig. 4 highlights that reconstructing gene networks by
tracing the complex network of protein interactions back
through to the mRNA levels and ultimately up to the genes
responsible for the regulatory control of gene expression
(i.e., identification of the key regulators of expression lev-
els) is ostensibly an easier network reconstruction problem,
given that the number of nodes is necessarily constrained
to be no greater than the number of expressed genes. In
contrast, reconstructing networks based on the complex,
heavily intertwined network of protein interactions, states,
and signaling pathways that lead to ill-defined, heavily over-
lapping functional categories seems a far more challeng-
ing problem.

Integrating genetic and gene expression data has been
successfully applied to identifying a number of novel genes
for diseases such as obesity, as well as to identifying key
regulator-target pairs (13, 21, 55). In one particular study
involving a segregating mouse population in which liver
expression profiles were generated in 111 animals span-
ning a range of metabolic phenotypes, not only were
scores of genes predicted as causal for obesity, suggesting
that entire networks of genes lead to obesity, but three of
the genes predicted as causal (C3ar1, Tgfbr2, and Zfp90)
were subsequently validated in the same study (13). A

more general form of this approach was developed to
examine the effects that single-gene knockouts have on
the transcriptional network, where such single-gene per-
turbation signatures can then be intersected with networks
associated with disease constructed from independent
sets of data (12). With this approach, the aim is to leverage
the matching patterns of gene changes in the perturbed
networks to isolate genes causal for disease. This approach
was successfully applied to identify Alox5 as a susceptibility
gene for obesity and bone traits (12).

The relatively simple approaches described above really
serve to partition the gene networks associated with dis-
ease into causal, reactive, and independent pieces with re-
spect to a phenotype of interest, so that genes supported
as causal for the phenotype can be identified. These con-
cepts have been generalized to varying degrees by several
groups to allow for the more general reconstruction of
gene networks by the integration of genetic and gene ex-
pression data (21, 55, 63, 64). The reconstruction of bio-
logical networks has achieved moderate success in the
past, where predictive networks associated with cell cycle,
circadian rhythm, and development have emerged that
capture many of the fundamental attributes of living sys-
tems. The key to elucidating biological networks is a sys-
tematic source of perturbations, where the more harsh
perturbations involving the complete knockout of gene
activity or extreme overexpression of a gene’s activity are
now being balanced with naturally occurring DNA varia-
tions that more subtly perturb biological systems. These
sources of perturbation are also highly multifactorial, and,
in combination with environmental variation, explain a
majority of complex phenotypic variations in natural popu-
lations (13, 21, 44, 49, 50, 52, 59, 65).

Zhu et al. (21) were among the first to formally incor-
porate genetic data into the reconstruction of gene ex-
pression networks using Bayesian network reconstruction
methods. With Bayesian network reconstruction methods
taking gene expression data as the only source of input,
many relationships between genes in such a setting will
be Markov equivalent. This means that one cannot sta-
tistically distinguish whether a given gene causes another
gene to change or vice versa. To break this symmetry, Zhu
et al. incorporated genetic information to establish more
reliably the correct direction among expression traits. This
method has been applied to networks comprised only of
expression traits, as well as to networks comprised of both
expression and disease traits, where the aim has been to
identify those portions of the network that are driving a
given disease trait. Figure 2A represents an example of a
subnetwork resulting from the application of this method
in the BXH cross. In this published study, Insig2 was iden-
tified as a key driver of a number of metabolic traits, in-
cluding cholesterol levels (33). Insig2 was subsequently
shown to explain a significant percentage of lifetime BMI
in the human population, validating its role as a key gene
in metabolic processes (3). The network shown in Fig. 2A
is a subnetwork from a much larger network reconstructed
from the liver gene expression data of the BXH cross, and
highlights the context that these networks can provide for
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specific genes of interest. For example, not only does
Insig2 associate with cholesterol metabolism genes, it also
associates with genes such as Mod1, which itself has been
previously predicted as a susceptibility gene for obesity in a
completely independent cross (13).

Figure 2B highlights a subnetwork from the same BXH
cross referenced above, but focused, in this case, on the
brain gene network, in which clinical phenotypes as well
as gene expression traits were incorporated (56). This sub-
network, which is part of the larger brain gene network
constructed in this study, again provides a context for a
given gene of interest (Pttg1 in this case), highlighting not
only genes that a given gene is predicted to influence, but
clinically relevant phenotypes as well (insulin, glucose, and
leptin levels, as shown in Fig. 2B). The contexts provided
by the networks in these cases enable the prioritization
of putative points of therapeutic intervention for diseases
of interest, given that targets in the network can be iden-
tified that involve genes identified in multiple disease areas
(such as Insig2), genes specific to a given disease subtype,
genes that may be involved in toxicity-associated pathways,
as well as genes involved in pathways associated with ad-
verse events (14).

In addition to the work of Zhu et al., Kulp and Jagalur
(55) recently described a method that integrates interacting
expression and genotype data to identify key regulator–
trait pairs, facilitating direct identification of quantitative
trait genes for gene expression QTL. Stylianou et al. (64)
also recently devised a method based on structural equa-
tion modeling to incorporate a number of clinical pheno-
types and associated QTL into a graphical model to identify
interacting networks of many genes regulating obesity-
related traits. Finally, Koller et al. (63) have recently
described a novel probabilistic method for integrating
genotypic and expression data to uncover regulatory rela-
tionships among genes that would not otherwise be un-
covered by looking at genes independent of the network in
which they operate. These new network-based methods not
only support earlier work in this area on inferring causal
associations by integrating genotypic and gene expression
data, but they also continue to take us closer to building
large-scale networks that are predictive and that will en-
hance our ability to elucidate disease and other complex
phenotypes underlying living systems.

FROM NETWORKS TO THE IDENTIFICATION OF
KEY INTERVENTION POINTS

The primary goal in elucidating the network associated
with a disease involves not only finding the key drivers of
the disease but also developing a better understanding of
how to better target the disease, given the structure of the
underlying network. Networks aid in the identification of
disease subtypes and provide a broader context in which to
assess the best genes to target for therapeutic intervention
of disease, taking into account nodes in the network
associated with multiple diseases, subtypes of disease, and
toxicity pathways, as well as other clinical phenotypes that

may be adversely affected (14, 52). One of the complexi-
ties encountered in dissecting common human diseases is
the degree of disease heterogeneity represented in almost
every population studied. Different pathways associated
with different molecular processes may underlie a particu-
lar disease subtype, so that any given population repre-
sents a mixture of these different subtypes (12, 24, 52, 66,
67), and networks provide a rational way to identify path-
ways specific to different subtypes (Fig. 5A). The topolog-
ical overlap map shown in Fig. 5A highlights functional
units of the network (the gene modules) that are enriched
for genes operating in pathways known to be associated
with disease-related traits. Such modules would be ex-
pected to be enriched not only for genes associated with
disease but also for genetic loci associated with disease,
and this type of information can be used to aid in the
stratification of disease populations into specific disease
subtypes. Ultimately, identification of subnetworks associ-
ated with different disease subtypes leads to the identifi-
cation of targets that are specific to a given subtype, as well
as to biomarkers for the disease subtypes that can be used
in classifying patients into treatment groups (14).

In addition to disease subtypes, biological networks
bring to light the need to target multiple genes driving
common forms of diseases such as obesity, diabetes, and
atherosclerosis. One simple example of a combination
therapy for targeting multiple pathways to treat disease
involves statins and the drug ezetimibe. Statins lower
cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-CoA
reductase, the rate-limiting enzyme for cholesterol synthe-
sis. On the other hand, ezetimibe inhibits Niemann-Pick
type C1 gene-like 1 gene, an intestinal cholesterol trans-
porter. Thus, these two classes of drugs affect cholesterol
levels by attacking completely independent pathways, and
these drugs taken in combination may have a more
pronounced impact on cholesterol levels than either drug
taken alone (68). Beyond this simple example is the idea
that common diseases such as obesity, diabetes, and
atherosclerosis are emergent properties of the network,
and so are likely not to be treatable in a highly efficacious
manner by targeting only a single gene. Instead, disrupt-
ing the different parts of the network driving the disease
will likely require the simultaneous targeting of multiple
genes. Yeh et al. (69) constructed drug interaction net-
works by looking at all pairs of a number of antibiotic and
anticancer drugs, monitoring the activity of these drug
combinations using a sensitive bioluminescence assay to
detect subtle variations in viability and growth. Interest-
ingly, they found that the drugs could mostly be classified
into two sets, where in one set, all drugs acted synergis-
tically and in the other, they acted antagonistically, sup-
porting the idea that gene network studies may reveal what
combinations provide synergistic effects that may signifi-
cantly enhance efficacy of treatment.

The types of gene networks discussed herein suggest
that many more than two targets will need to be hit at a
time in order to destabilize networks driving disease. The
modules identified in the type of coexpression network
depicted in Fig. 2A are comprised of sets of genes that are
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completely connected, in which every gene in each of the
completely connected sets is significantly correlated to
every other gene in the set (in graph theory terms, the set
forms a clique structure), as depicted in Fig. 5B. If these
types of structures turn out to be central to the onset of
disease, targeting a single gene probably will not destabi-
lize the structure enough to lead to an effective treatment,
given the redundancy inherent in such structures, which
provides them the ability to compensate for perturbations
to single genes in the structure. To sufficiently destabilize
such structures, multiple genes would likely have to be
pharmacologically targeted to treat disease effectively, as
indicated in Fig. 5B.

The type of clique structure depicted in Fig. 5B may
also associate with other clique structures via weaker links
(weaker than the links making up the clique structures),

giving rise to what are known as clique communities that
together may drive systems into a particular disease state.
That is, clique communities rather than individual cliques
may turn out to induce the type of coherence needed to
drive a system into a disease state. In such cases, it may
again be necessary to target not only multiple genes within
a given clique, but also multiple genes within multiple
cliques to destabilize the weak links between these struc-
tures and so destroy, in turn, the coherence needed to
drive systems into disease states (Fig. 5C). Given the many
different parts of entire networks that may be involved in
complex diseases such as obesity, diabetes, and athero-
sclerosis, it may be necessary to target 10 or 20 or even 50
or more genes simultaneously to treat disease most
effectively. Classic small-molecule designs will probably
not be feasible in this setting, whereas if RNAi-based

Fig. 5. Highlighting the need to target multiple genes to treat common diseases such as obesity, diabetes, and atherosclerosis. A:
Integrating molecular profiling, genetic and clinical data can result in the identification of multiple disease subtypes and in elucidation of
pathways underlying the different subtypes. The topological overlap map from Fig. 2 is displayed on the right, with modules 1 and 2
highlighted as representing two different functional components of the network driving two different subtypes of disease (red and blue
boxes on the left). The red nodes indicate putative targets within each subtype that could be developed to treat disease. B: A hypothetical
clique structure from one of the disease-associated modules highlighted in the topological overlap map in panel A. Given the highly
interconnected nature of this structure, targeting a single gene may not lead to an efficacious treatment of disease, given the ability of such
interconnected structures to compensate for such perturbations. Instead, it may be necessary to target multiple genes to inhibit the ability of
other genes in the subnetwork to compensate. Three genes are highlighted as being targeted in this case (red nodes). The red edges
indicate connections that are weakened or eliminated, leading to destabilization of the structure and subsequent loss of the coherence
needed to maintain a disease state. C: Similar to B, but there are two clique structures whose interaction drives one of the disease subtypes.
In this case the coherence needed to maintain the disease state is achieved via relatively weak links between the clique structures.
Simultaneously targeting multiple genes in these structures may destabilize the weak links, and, as a result, destroy the coherence needed to
maintain the disease state.

2610 Journal of Lipid Research Volume 47, 2006

 by guest, on June 14, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


therapeutics prove effective (via the use of miRNAs or si/
shRNAs), such a technology would offer a way to simul-
taneously target a number of genes. Already there are
technologies developing that not only allow for the simul-
taneous targeting of a number of genes using RNAi-based
approaches, but that also enable the efficient delivery of
double-stranded RNA molecules to the targeted cell types
of choice (70). Because the type of targeting depicted in
Figs. 5B and C aims to destabilize portions of the net-
work driving disease, complete gene knockdown or activa-
tion probably will not be required. Instead, suppressing or
activating multiple genes enough to destabilize the links
needed to achieve the coherence necessary to push a sys-
tem into a disease state would be needed, and again, this
may be something RNAi-based technologies are well suited
to deliver. It is of note that if such treatment paradigms
become possible, the most effective treatments will come
from investigators who understand disease at the systems
level, which no doubt will require the reconstruction of
predictive gene networks in the spirit of what we have re-
viewed here.

CONCLUSIONS

The network methods reviewed here provide a conve-
nient framework for moving beyond examining genes one
at a time to understand the complexity of common hu-
man diseases. Whether constructing interaction networks,
Bayesian networks, networks based on structural equation
models, or networks based on any of the other myriad of
network reconstruction methods, the advantage the net-
work view affords is the ability to consider more of the raw
data informing on complex phenotypes simultaneously,
taking into account dependency structures between all of
the different fundamental components of the system, and
providing a framework to integrate a diversity of data types
(something Bayesian network reconstruction methods are
particularly good at). Researchers in the life and biomedi-
cal sciences will have few other options available to them
in considering the vast amounts of data being generated to
elucidate how the hundreds of thousands or even millions
of fundamental components within the cell interact to give
rise to complex phenotypes. Networks provide one of the
only frameworks of which we are aware to systematically
and simultaneously take all of the fundamental components
into account. Statistical inferences on networks will come
to define much of the future research needed in this field
to adequately leverage what network models can provide.

Of course, the types of approaches reviewed here rep-
resent only the first steps being taken to reconstruct
meaningful gene networks, and even in this review, we
have largely restricted attention to genetic, gene expres-
sion, and disease phenotype data. Ultimately, it will be nec-
essary to integrate many different lines of experimental data
simultaneously. Protein-protein interactions, protein-DNA
interactions, protein-RNA interactions, RNA-RNA inter-
actions, protein state, methylation state, and especially dif-
ferential methylation states have now been shown to act

transgenerationally (71), and interactions with metabo-
lites, among many other important interactions, are all-
important pieces that define complex phenotypes that
emerge in living systems. What a given protein and RNA do
will give way to what a network of protein, RNA, DNA, and
metabolite interactions do, where such networks of inter-
action are defined by the context in which they operate,
with environment playing a critical role. Understanding a
particular network state that drives disease (or other com-
plex phenotypes that define living systems) will require not
only knowledge of DNA and environmental variation and
the changes these variation components induce in the net-
work, but also information on the previous states of the
network that led to the current state, where environmen-
tal stresses interacting in complex ways with genetic back-
ground not only influence the current state of the network
but also can lead to longer lasting effects on the network
that act transgenerationally.

While this more comprehensive reconstruction of bio-
logical networks is still outside the scope of what is
presently doable, the types of approaches reviewed here
represent solid first steps toward this ultimate goal. Even
though the number of networks that can be reconstructed
from the fundamental components of living systems is
truly daunting, as work progresses in this area, we will learn
the rules that necessarily constrain the possible ranges of
molecular interactions, and as a result, will begin to
capture the more conserved network motifs that form the
framework upon which all other interactions are based.
The complexity revealed by a systems biology-motivated
approach to elucidating complex phenotypes such as dis-
ease should be embraced, given the potential to develop a
better understanding of the true diversity of disease and
the constellation of genes that need to be targeted to
effectively treat disease.
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